翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cauchy determinant : ウィキペディア英語版
Cauchy matrix
In mathematics, a Cauchy matrix, named after Augustin Louis Cauchy, is an ''m''×''n'' matrix with elements ''a''''ij'' in the form
:
a_=};\quad x_i-y_j\neq 0,\quad 1 \le i \le m,\quad 1 \le j \le n

where x_i and y_j are elements of a field \mathcal, and (x_i) and (y_j) are injective sequences (they do not contain repeated elements; elements are ''distinct'').
The Hilbert matrix is a special case of the Cauchy matrix, where
:x_i-y_j = i+j-1. \;
Every submatrix of a Cauchy matrix is itself a Cauchy matrix.
== Cauchy determinants ==
The determinant of a Cauchy matrix is clearly a rational fraction in the parameters (x_i) and (y_j). If the sequences were not injective, the determinant would vanish, and tends to infinity if some x_i tends to y_j. A subset of its zeros and poles are thus known. The fact is that there are no more zeros and poles:
The determinant of a square Cauchy matrix A is known as a Cauchy determinant and can be given explicitly as
: \det \mathbf=     (Schechter 1959, eqn 4).
It is always nonzero, and thus all square Cauchy matrices are invertible. The inverse A−1 = B = () is given by
:b_ = (x_j - y_i) A_j(y_i) B_i(x_j) \,     (Schechter 1959, Theorem 1)
where ''A''i(x) and ''B''i(x) are the Lagrange polynomials for (x_i) and (y_j), respectively. That is,
:A_i(x) = \frac \quad\text\quad B_i(x) = \frac,
with
:A(x) = \prod_^n (x-x_i) \quad\text\quad B(x) = \prod_^n (x-y_i).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cauchy matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.